Microgravity Crystallization of Protein Therapeutics Example: Interferon alfa-2b

Paul Reichert

Schering Plough Research Institute

Protein Engineering and Biochemistry Department

June 23, 2003

Outline

- Background
 - Pharmaceutical Applications for Crystalline Proteins
 - Interferon alfa-2b (Biology and crystallization)
 - Microgravity Effects
 - SPRI –UAB/CBSE Connection
- Microgravity Studies: Results to date
 - Hardware development
 - Results from STS-51,70, 101 and 107
- Summary

Pharmaceutical Applications for Crystalline Proteins

Area

Drug Discovery

Manufacturing

Product Development

Goal

<u>Application</u>

- -Structure determination
- -Structure assisted drug design

- -Purification (interferon)
- -Storage / stability

-Controlled Release (insulin)

-Pulmonary Delivery (interferon) (no injections)

Interferon Alfa-2b (Background)

Biology

- Interferon alpha-2b: human protein possessing potent antiviral and immuno-modulatory activity
- An approved therapeutic for hepatitis B & C, melanoma, venereal warts, AIDS related Kaposis sarcoma and hairy cell leukemia
- Recombinant protein marketed as INTRON A and a pegylated version marketed as PEG-INTRON A

۱... - ۱۱: - - ۱۱: - - ۱۱: - - ۱۱: - - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: - ۱۱: -

Application Structure determination	Morphology cubic	Method zinc complex /temperature
Purification	needle	temperature
Controlled release	cubic	zinc complex /temperature
Pulmonary Delivery	spherulite	temperature

Microgravity Effects and Challenges

Theoretical Advantages:

- Minimize sedimentation effects
- Minimize density gradients
- Control convection currents

Challenges:

- Cost
- Accessibility (launch delays, scrubs, flight opportunities)
- Experimental access (limited monitoring)
- Recovery

Overall unique research tool!

SPRI-UAB/CBSE Connection

Goal: produce microgravity derived crystalline IFN suspensions and compare to ground based experiments using biological and physical biochemical methods

University of Alabama at Birmingham Center for Biophysical Sciences and Engineering (UAB/CBSE):

Experience/ hardware/ processing/ integration/ analysis/ human resources

Schering Plough Research Institute(SPRI): Protein / experimental design/ analysis/ human resources

Both proprietary and non-proprietary experiments

Protein Crystallization Facility (PCF) Hardware

Large scale- temperature induced batch crystallization

- Polysulfone bottles (1- 1000 ml capacity) with aluminum tops
- Thermal carrier: C-RIM (flight incubator)
- SPRI-UAB/CBSE hardware patent
- Crystallization studies alpha-2b interferon using (pI crystallization method; 4 to 22 ° C over 24 -48 hour gradient)
- Large scale Zinc- interferon complex crystallization method was developed
- Goal: crystals suitable for structure determination

Microgravity IFN Crystallization Studies: STS-51

Analysis of Zinc -interferon crystalline protein from flight experiment:

- Retained full biological activity
- 2.4-fold increase in crystal dimensions was found in space-grown crystals
- 95% IFN crystallized
- Space-grown crystals remain a free flowing suspension
- Sample processing and storage in polysulfone bottles did not affect protein integrity, crystallization or biological activity

Microgravity IFN Crystallization Studies: STS-70

Ground Control Experiment Photomicrograph 200x

Particle size analysis:
Probability area density graph

Flight Experiment
Photomicrograph 200x

Particle size analysis:
Probability area density graph

Crystalline Interferon for Controlled Release STS-70 (Zinc IFN suspension)

Crystalline Interferon Suspension for Pulmonary Delivery

Rationale for pulmonary delivery (systemic delivery of interferon via pulmonary disposition)

Key for delivery: aerosol particle size (ca. 1 micron)

- Pulmonary delivery demonstrated for insulin and human growth hormone
- > Challenge to produce uniform crystalline interferon suspension suitable for pulmonary delivery in a pharmaceutically acceptable buffers via nebulizer

400X Photomicrograph / IFN suspension

mean size; 0.78 ± 0.2 uM

400X Photomicrograph / Polystyrene Micro spheres (1.4u)

Microgravity Interferon Crystallization Studies: STS-101 (Purification-Manufacturing)

- Temperature induced pI crystallization method
- Vary pH vs. salt
- Analyzed by HPLC and MS analysis: no difference between flight and ground crystals

Protein Assay Redissolved Crystals

Dynamic Light Scattering Analysis Redissolved Crystals

STS-107 Experience

(Purification-Manufacturing)

- Follow-up experiment to STS-101
- Poisoned interferon with known impurities (proteineous and non-proteineous)
- Special mission (research based)
- Diversity of research experiments
- Type of mission NASA should continue in principle

Summary

- Microgravity experimentation has allowed for advances in crystallization hardware and processing methods
- Partnering essential for success
- Value to overall research effort
- Future studies: ISS research tool (automation and micro fluidics)

Acknowledgements

UAB / CBSE Staff
Marianna Long, Karen Moore, Vickie King
Johnson, Dan Connors, David Ray, Lisa Smith,
Charles Bugg and Larry DeLucas

Schering Plough Staff
Gerald Hammond, Susan Cannon -Carlson, Wasyl
Sydor, Suzanne Mercorelli, Fred Ward, Roland
Mengisen, Yan-Hui Liu, B. Twarowska, U. Mirza,
S. Wang and Hung V. Le